Monthly Archives: December 2010

External costs of energy technologies, part 3

by Art Wharton

Can renewables rescue us?

Part 2 of this article, which appeared here on December 29, made the point (in part) that the nuclear power industry sequesters its nuclear “waste,” while other power producing industries do not. This capturing of waste products matters when calculating the external costs of energy technologies.

Photovoltaic cell

Photovoltaic (solar) cells produce wastes not accounted for in its conventional cost calculations due to its comparatively high demand for steel, glass, cement, and sometimes even aluminum. Cadmium is a toxic heavy metal contained in many solar cells, which presents health hazards to humans, as well.

ANS Position Statement 63 points out:

While some energy technologies may appear to have smaller environmental impacts than others, their external costs may be significant when the complete life cycle costs are taken into account. Particularly, an energy source that is inherently intermittent will require, for applications demanding reliable performance, either a backup energy supply or an energy storage facility, whose external costs are not negligible.

Since the sun doesn’t shine 24/7, and even if you wanted to cover a land mass equal to the size of West Virginia with solar panels to replace an estimated 768 billion kilowatt hours of annual nuclear energy output in the United States, you would incur external costs through load-following technologies such as methane-burning power plants, or energy storage facilities such as battery banks, flywheels, pumped hydro, compressed air, or even one large-scale storage solution that I recently became interested in that’s being developed with Charles Forsberg, an ANS Fellow from the Massachusetts Institute of Technology.

Wind power is an intermittent source, too. Both solar and wind have unimpressive power densities compared with other sources of energy that speak to environmental impact.

We’re not asking to dominate, we’re asking for balance

Nuclear energy is the only source of energy that has been obligated to account for all the costs to ensure that it is safe and secure, including waste management and disposal, into the cost of electricity. Even with this stacked deck, nuclear energy has remained competitive and profitable, with a phenomenal safety record. The physical density of nuclear energy enables solutions to these questions: How do we ensure that our technology does not harm society? How do we ensure that we are providing the maximum benefit to society?

When I took the oath of the engineer and began my career, I pledged an obligation to serve humanity and make the best of Earth’s precious wealth through my skill and knowledge. Nuclear energy holds that potential to benefit society through its energy density. Not only are we able to contain our waste because the volume is controllable, but we can ensure that we do not contribute to pollution.

Nuclear energy is large-scale baseload energy. Nuclear energy is demonstrably safe, even though it utilizes potentially harmful material. Men and women have dedicated careers and lives to gaining knowledge and skill in how to safely implement nuclear technology to the benefit of society, and when national energy policy decisions are being made, credit is due to those who made it so. At the end of the day, there is no denying it: We need nuclear energy.

(Part 1 of this three-part article appeared on the ANS Nuclear Cafe on December 28 and is available here. Part 2 appeared on December 29 and is available here. )


The views expressed here are my own and do not necessarily represent the positions, strategies or opinions of Westinghouse Electric Company LLC.


Art Wharton is a senior project engineer at Westinghouse Electric Company LLC in the Nuclear Power Plants product line. He is a member of the ANS Planning committee, the Operations and Power Division Program committee,  is a Pittsburgh Local Section past chair, and is a guest contributor to the ANS Nuclear Cafe.

External costs of energy technologies, part 2

by Art Wharton

Where does waste = external costs?

Dry cask storage area (Photo: NRC)

Part 1 of this article, which appeared here on December 28, made the point that the nuclear power industry sequesters its nuclear “waste.” The same statement of high standard cannot be said for applications of combustion, whether it be from coal, petroleum products, or methane (ingeniously marketed as natural gas). This is where external costs come into play. External costs can come in many forms, including from public health impacts, environmental impacts, and reductions in people’s quality of life. As I’ve been writing this blog post, the Pittsburgh Post-Gazette newspaper has been in the middle of publishing an eight-part series of articles titled “Mapping Mortality,” based on a year-long investigation. The articles describe the many external costs of the coal plants lining the Ohio River valley in western Pennsylvania.

Just as nuclear engineers can express their disappointment over what may be the final chapter in the 28-year history of the Yucca Mountain repository project, there is similar disappointment by others over the fate of Little Blue Lake, which was originally advertised decades ago by Penn Power as eventually becoming a recreation area with beauty matching the rest of western Pennsylvania’s picturesque landscape. Thirty-five years later, Little Blue Lake garners descriptions such as “moonscape,” which highlights its desolate wasteland feel. It currently contains 100 million tons of fly ash and calcium sulfate—the waste from coal power. The sheer volume of this 1000-acre site that crosses state lines dwarfs the volume of waste from the nuclear energy industry. Where are the boats and skiers that were supposed to enjoy Little Blue Lake? After all, it’s just ash, right? I use ashes in my compost for my home garden.

Fly ash is different, however, and a debate exists on whether it contains enough heavy metals such as arsenic and lead to be considered “hazardous waste” under U.S. Environmental Protection Agency regulations. The environmental groups such as the Sierra Club claim that the ground water is contaminated around the Little Blue Lake site, but the company that maintains the site says that it has met all regulations imposed on it, with an emphasis on safety. Some people will feel as though this exchange of public positions is similar to the back-and-forth that goes on regarding tritium in groundwater around nuclear plants, so this example of one of the largest of 39 coal-ash dump sites in the United States may not be compelling enough for some people. Rather than describing why I’d be willing to drink the water contaminated with tritium that was found to have leaked from the Vermont Yankee nuclear power plant or anywhere else, I’ll move on and stay on topic.

Spent fuel shipping cask mounted on a railroad car

Non-nuclear industries have the luxury of not having to create indestructible containers in which to dispose of their waste, as does the nuclear power industry. Little Blue Lake is one example, and another clearer example is the smoke stacks at fossil fuel plants and refineries that spew their waste into the atmosphere. Western Pennsylvania is again an excellent example of the effects of this non-containment of waste, and the Pittsburgh Post Gazette has done a lot of legwork in describing the phenomenon through Mapping Mortality. It only confirms through statistically significant data what we all intuitively know as true: breathing polluted air is bad for us.

There are 32 facilities in Allegheny County (around Pittsburgh, Pa.) alone that the state of Pennyslvania’s Health Department labels as “major sources” of air pollution because annually these facilities emit 10 tons or more of a hazardous air pollutant, or 25 tons of what they define as “criteria pollutants” such as ozone, lead, sulfur dioxides, nitrogen dioxides, and carbon monoxide. Ten tons of hazardous air pollution times 32 qualifying polluters in Allegheny County equals 320 tons of airborne hazardous pollutants, separate from the sludge that the 32 facilities pour into waste sites.

When we consider how beautiful Pittsburgh looks today, versus how obvious the air pollution was in the early 1980s when the southside district was still lined with steel mills, the plainly observable fact that 320 tons per year is less severe than the pollution levels of 30 years ago (when many scrubbing technologies didn’t exist and were not required) indicate that the external costs of utilizing combustion of coal or even the less-polluting methane gas have affected the way our society operates. Clusters of death, respiratory problems, cancer, and other sicknesses related to these technologies’ ability to release massive amounts of waste into the atmosphere don’t enter into the equation on the cost of energy in conventional models. As the EPA adds regulations based on the Clean Air Act, pollutants are reduced, but from a technological standpoint, it’s not reasonable to suggest that they can be reduced to zero, or to some level that could even remotely compete with the nuclear energy industry’s ability to contain its “waste.”

As a reminder of the principle of Conservation of Mass, note that any of that particulate that doesn’t end up in the air just becomes more waste for places like Little Blue Lake. Either way, there are significant external costs to the community.

(Part 3 of this three-part article will appear on December 30, on the ANS Nuclear Cafe. Part 1 appeared on December 28 and is available here.)


The views expressed here are my own and do not necessarily represent the positions, strategies or opinions of Westinghouse Electric Company LLC.


Art Wharton is a senior project engineer at Westinghouse Electric Company LLC in the Nuclear Power Plants product line. He is a member of the ANS Planning committee, the Operations and Power Division Program committee,  is a Pittsburgh Local Section past chair, and is a guest contributor to the ANS Nuclear Cafe.

External costs of energy technologies, part 1

by Art Wharton

The often-ignored difference maker

There are numerous articles and analyses on the construction, operation, maintenance, and fuel costs of the various forms of energy that demonstrate that nuclear power is competitive with coal power generation. The articles and analyses reveal that nuclear and coal run neck-and-neck for the total cost of energy over the plant lifetimes. Buried among the numerous position statements of the American Nuclear Society is PS63, “External Costs of Energy Technologies,” which addresses an additional cost not often taken into account in the calculations—external costs.

ANS believes that decisions concerning national energy policy should appropriately take external costs into account. That’s how PS63 begins. It is innocuous enough, and it doesn’t provoke too much thought at the surface, because it seems so logical that “you should take all factors into account” when making important decisions.

If, for example, a nuclear engineer took one factor out of reactivity calculations, it could create catastrophic results. The 0.65 percent of neutrons borne delayed in uranium-235 fission—a comparatively small amount of neutrons—is exactly what makes fission controllable, and thus makes the peaceful applications of nuclear energy possible.

Understanding this logic, and the immense amount of energy that is needed to build baseload electricity capacity, I won’t buy an argument from someone who says, “External costs are only a minor part of the equation.” We’re not talking about nuclear physics anymore, so whatever is meant by “external costs” must be compelling.

It starts with waste

External costs can be directly linked to one of the most popular questions I get from people outside of the nuclear energy industry: “So, what about the waste?” Although the issue of nuclear waste generates the most questions, there are answers. Not everyone agrees on the “right” answers, of course, but people who are educated in nuclear waste disposal/storage techniques agree that one or many of those answers is technologically viable and is safe to the public.

One thing is for sure: The nuclear industry’s answer is assuredly not “the waste goes out of the smoke stack.” Unlike many other forms of energy production, the nuclear industry does have an answer to deal with the waste it generates. In the United States, the Nuclear Regulatory Commission ensures that all licensees under Title 10 of the Code of Federal Regulations know where their radioactive material is at all times. But not everyone has undying faith in the vigilance of the federal government to enforce laws and regulations—they haven’t met the NRC chairman, Gregory Jaczko—so we’ll talk technology here that is applicable worldwide.

The primary loop in nuclear reactors can be thought of as a closed system. No nuclear material gets added or taken out except during deliberate outages when power reactors are being serviced or refueled. When the partially-used fuel that is commonly referred to as “waste” is taken out of the reactor, it is stored. I put quotes around “waste” because there is a lot of value left in it—in fact, more than 98 percent of it remains usable after a “once-through” cycle.

La Hague

In France, the nuclear industry recycles the used fuel and vitrifies (encases it in glass) the remaining portion that some still insist on calling waste. One room in Areva’s La Hague reprocessing facility, in France, contains the entire French nuclear power fleet’s remaining waste after the used fuel is recycled. If you can gain access to this facility, you can slowly saunter across that room without having to worry about your health due to radiation risk, even though the vitrified waste is stored right under the floor on which you are walking.

Where else is used fuel reprocessed? Belgium, China, Germany, India, Japan, Russia, Switzerland, and the United Kingdom all reprocess, according to World Nuclear News.

In the United States, the Nuclear Waste Policy Act of 1982 (NWPA), as amended in 1987, declares Yucca Mountain in Nevada as the storage facility for the nation’s used fuel—and American electricity ratepayers have been paying for such  storage facility since September 1983. Regardless of what political outcome arises from the drama surrounding the NWPA or your opinion on how Yucca Mountain should be used, the nuclear energy industry is dedicated worldwide to ensuring that the public is not exposed to the used fuel that we call “waste.”

[Aside: When I’m in a particularly flippant mood and not in a situation where I represent any company or organization in a formal manner, I often reply to the “What about nuclear waste?” question with, “Why don’t you call your representative and senators? They’ve had you paying for that solution since 1983.” Through this provocation is how I often get the attention of the audience to address politics vs. technically feasible solutions. End Aside.]


If you want to talk about mining operations, not only do we see a high death/accident rate among coal miners, but a paper written by legendary Dr. Bernard Cohen, Emeritus of the University of Pittsburgh, suggests that uranium mining operations actually SAVE lives by taking that uranium out of the earth and controlling it in industrial facilities, thus reducing the overall population’s exposure to radon gas.

(Part 2 of this three-part article will appear tomorrow, December 29, on the ANS Nuclear Cafe.)


The views expressed here are my own and do not necessarily represent the positions, strategies, or opinions of Westinghouse Electric Company LLC.


Art Wharton is a senior project engineer at Westinghouse Electric Company LLC in the Nuclear Power Plants product line. He is a member of the ANS Planning committee, the Operations and Power Division Program committee,  is a Pittsburgh Local Section past chair, and is a guest contributor to the ANS Nuclear Cafe.

Looking backward, looking forward

The View from Vermont

By Meredith Angwin

It’s an odd time now, between the old year and the new. A time to look backward and assess, and a time to look forward and plan. That’s why the pagan god of January was Janus, who looks forward and backward at the same time. In honor of Janus, I’ll do the same.

Looking backward

On January 1, 2010, I started blogging at Yes Vermont Yankee. I was already in the Coalition for Energy Solutions and we were analyzing a report from the Vermont Public Interest Research Group (VPIRG) on replacing the Vermont Yankee nuclear power plant.

But mostly, I was writing long e-mails to my friends and short letters to the editor. It didn’t seem like enough.

It wasn’t. About two weeks after I started blogging, a tritium leak was found at Vermont Yankee. Opponents were exuberant because “Vermont Yankee had lied about tritium.” They saw an inaccurate statement about underground pipes as a big stick, and they used it.

Within a short time, blogging wouldn’t seem like enough, either.

Crisis and allies

The wonderful thing about crisis is that your allies will also come forward. In this case, there were three groups that made further progress possible.

The first is the American Nuclear Society, which started its Vermont Pilot Project, with Howard Shaffer as liaison. ANS has knowledge and members. They shared their knowledge with us, and ANS has provided lists of experts when we need support. ANS has also provided phone coaching on media relations. It’s all been low cost and low key, but we have allies now.

The second group was friends who introduced me to John McClaughry of  Ethan Allen Institute, a free-market think tank in Vermont. McClaughry is a well-respected former Vermont state senator. He is also a nuclear engineer. We hit it off immediately, and the Energy Education Project was born. Through this project, we have memberships, raise money for outside speakers on energy issues, and even print a few flyers without dipping into our own personal pockets. It has made a huge difference.

The third group was Areva and its outreach to bloggers. When Areva invited me to see the recycling facilities in France, it was a huge boost to my morale. Not only did I see fuel recycling with my own eyes, but I met fellow pro-nuclear bloggers. We chatted on long train trips and over excellent meals. It was the perfect way to make friends. Once again, I knew I was not alone.

Looking forward

The Energy Education Project of the Ethan Allen Institute and the Vermont Pilot Project of ANS  are changing the dialog about energy in Vermont. We are making support for nuclear energy acceptable!

Some recent and near-term events include:

  • I have been interviewed on a radio show that is usually anti-nuclear, Equal Time Radio.
  • Howard Shaffer and I have debated the VPIRG “clean energy” guru and an anti-VY senator on Public Access TV.
  • My blog and the ANS blog were the first to feature Dr. Robert Hargraves’ six-minute cartoon:  Vermont Yankee Explained. I have also arranged for the cartoon to appear on local cable TV
  • Howard and I are scheduled for at least six more appearances in January, including local groups, newspapers, and radio talk shows.

One of the reasons we have so many events scheduled is that we actually have a volunteer helping to schedule them! This is a real change for the better.

We’re bringing in the experts, also. As I mentioned in an earlier post, Gwyneth Cravens, author of Power to Save the World will come to Vermont on January 20.

Click to Enlarge

Cravens will speak to a Legislative Round Table at noon, and she will also speak at the Sheraton in Burlington in the evening. At the Round Table, her books will be available to legislators free of charge. The Ethan Allen Institute has arranged significant media coverage for her visit.

In February, we will have Dr. Kathryn McCarthy of Idaho National Laboratory coming to Montpelier and Burlington. She will talk about Gen IV reactors. February 17 is the tentative date.

It’s hard to predict the future

There is no doubt that Peter Shumlin is the governor-elect of Vermont. Since he campaigned as “Vermont Yankee’s worst enemy” it didn’t feel like good news. Two recent blog posts have discussed this issue. Howard Shaffer’s blog, Vermont’s Nuclear Debate, continued, was named the “Best of the Blogs” by Nuclear Townhall.


Shaffer’s blog gives an important overview of the situation in Vermont. I also recommend Dan Yurman’s excellent post,  Why Peter Shumlin Will Save Vermont Yankee. As Yurman describes it, if Peter Shumlin saves Vermont Yankee, he will do  so in order to assure that Peter Shumlin is elected again.

We can’t predict the future, but we can influence it. Our job is to show everyone, including Shumlin, that nuclear and Vermont Yankee are best for Vermont. I do predict that we will be communicating our message through the ANS Vermont Pilot Project and the Ethan Allen Institute Energy Education Project. We will communicate effectively, with the help of our allies. We will continue to change and influence the debate!

Happy Holidays, and Happy New Year to all!


Meredith Angwin is the founder of Carnot Communications, which helps firms to communicate technical matters. She specialized in mineral chemistry as a graduate student at the University of Chicago. Later, she became a project manager in the geothermal group at the Electric Power Research Institute (EPRI). Then she moved to nuclear energy, becoming a project manager in the EPRI nuclear division. She is an inventor on several patents. Angwin serves as a commissioner in the Hartford Energy Commission, Hartford, Vt.

Angwin is a long-time member of the American Nuclear Society and coordinator of the Energy Education Project. She is a frequent contributor to the ANS Nuclear Cafe.

Food irradiation, explained

by Joseph Butterweck

Let’s talk about food irradiation, which has made some in the general public fearful simply because a form of the word “radiation” is involved. Irradiation is used to destroy harmful bacteria and parasites that might be inadvertently present in some food matter. Irradiation makes the food safer for human consumption and, at low levels, it extends food’s shelf life and can be used to control insects.

E. coli bacteria

Food irradiation starts with basic physics. Ionizing radiation converts an atom or molecule into an ion by adding or removing charged particles such as electrons or other ions. In food irradiation, this ionization process results in the breakdown of the DNA ( deoxyribonucleic acid) of targeted food pathogens, such as the E. coli (Escherichia coli) bacteria.

This DNA breakdown kills the unwanted pathogens and sterilizes the food product.

Food irradiation is ‘cold pasteurization’

The food irradiation process uses energy from the wavelength of 10–10 to 10–12 meters on the electromagnetic spectrum, a frequency of 1018 to 1020 and energy levels of up to 10 megaelectronvolts. This amount of energy is so low that it has been called cold pasteurization. When we think of sterilization processes, we think commonly of milk pasteurization, which is a heat process. In heat pasteurization, however, the product is brought up to a temperature of more than 161 °F (72 °C).

Radura symbol

Don’t confuse food irradiation with ultra-violet radiation and irradiated milk, which use different processes. All food products treated with ionizing radiation are clearly labeled with the radura, an international symbol that indicates that a food product has been irradiated. The symbol’s graphical details and colors vary may vary from country to country.

Food irradiation kills microbes, but does not affect food products

The food product does not change when treated with food irradiation. While heat sterilization damages both the food and the microbe, cold sterilization selectively targets the microbe, or pathogen. Eliminating the offending microbe while preventing any changes to the food composition is a huge benefit to the food industry and to the consumer.

There are three sources of the energy used in food irradiation:  beta particles, gamma waves, and x-rays. All three sources have the same effect on the pathogens.

Common uses of food irradiation in the United States

In the United States, food irradiation is used as follows:

  • Disinfesting tropical fruit from Hawaii and other tropical agriculture areas (Low dose 0.1 to 1  KiloGray or KGy, a radation unit of measure). Hawaii, like most tropical climates, has vast amounts of agriculture pests. Agricultural interests in the continental United States do not want to risk introducing a pest that would damage domestic agriculture production and the export market so the pest must be eliminated. The only way to get tree-ripened papayas into the continental United States is to treat it with ionizing radiation. Consumers want tasty, tree- ripened fruit from tropical climates, and the average U.S. citizen needs to consume more fresh fruits and vegetable.
  • Pasteurizing meats and fish (Moderate dose 1 to 10 KGy). The cooking of meat kills pathogens. When consumers bring uncooked meat into their homes, the pathogens are hitchhikers. Various E. coli outbreaks in beef hamburger and Salmonella from poultry products make news headlines. Using food irradiation to pasteurize meats and fish, however, can help to eliminate these types of outbreaks. The poultry and beef industry have been very frustrated trying to control some bacteria pathogens. Some strains of E. coli bacteria are very pathogenic and of very low doses (i.e., the number of bacteria), which can result in kidney damage, especially in young children. This pathogen is especially troublesome in Canada and Argentina, where the treatment of beef with ionizing radiation has never been approved. Both of these countries rely on aggressive Hazardous Analysis and Critical Control Point (HACCP)–like inspections instead of other intervention technology, such as food irradiation.
  • Eliminating food spoilage to increase shelf life (Higher dose over 10 KGy). Spices and other ingredients are contaminated with many kinds of microbes. Most do not cause a problem unless the right microbe gets into the processed food. Spoilage may result in a shortened shelf life. When ingredients are mixed with the commercially prepared food product, the microbes may grow and result in off flavors. The food becomes unacceptable.

Why should nuclear professionals be interested in food irradiation?

  • Healthy habits include eating fresh food, such as tree-ripened fruit. In the United States, more than half of the beef consumed is in the form of hamburger, which can be easily treated with irradiation to kill pathogens.
  • American Nuclear Society members should learn about their cousins involved with food irradiation, which is one of those “other” nuclear technologies.
  • As nuclear professionals, we must promote nuclear technologies that can help to save lives to a public that is not always comfortable with the technologies. Let’s share this information on how to better communicate the benefits of nuclear science.

Did you know? Other types of irradiation

Irradiation has been used to sterilize medical and personal hygiene products for more than 40 years. It is also used in the manufacture of plastic products.

Irradiation is used to sterilize about 40 percent of the single-use sterile medical devices currently manufactured in the United States, including bandages, blood plasma, burn ointments, catheters, eye ointment, hypodermic syringes, orthopedic implants, intravenous administration sets, surgical drapes, sponges, swabs, surgeons’ gloves, procedure packs, trays, and sutures.

Irradiation is also used for microbial reduction or sterilization of many personal hygiene products, such as aerosol saline solutions, baby bottle nipples, baby powder, bulk cotton bales, contact lens cleaning solutions, cosmetic ingredients, bar and liquid soap, detergents, polishes, shampoos, and hair cream.

Food packaging that often is irradiated to eliminate bacteria includes bulk food containers, cream cups and lids, dairy and juice cartons, plastic roll stock, heat shrinkable film, and laminated foil bags. Irradiation is also used on pet treats and various animal foods, including special diets for laboratory test animals. There are hundreds of other products that are irradiated that are not mentioned above.

For more information

For more information, please visit the Food Irradiators Processor Alliance’s Web site at FIPA is the commercial arm of the food irradiation industry. You can follow its links to obtain a vast amount of scientific and technical (S&T) information.

Food irradiation S&T has been studied extensive since the 1930s. The U.S. Army led the investigation through the 1960s, and Wikipedia has an excellent overview of food irradiation available here.

ANS offers A Day with the Atom, by Alan Waltar, which is available online. Waltar’s column traces the everyday uses of nuclear science and technology.

Bottom Line

Food irradiation can save lives. Why are food irradiation and nuclear technologies not more embraced in the U.S.? What do you think? Please post your comments.

Joseph Butterweck is an ANS member and the director of Environmental Medicine Services for the Aerospace & Environmental Medicine Group in Fresno, Calif.  Dr. Butterweck is a practicing veterinarian and became interested in food irradiation because it is the best option to control our major food pathogens.  He was consultant to General Atomics, both the U.S. and Canadian Governments and the private food industry including Merck & Co.  His work also included food safety in Argentina and Eastern Europe.  He is a contributor to the ANS Nuclear Cafe.

American Nuclear Society 2011-2012 scholarships available

American Nuclear Society scholarship applications for the 2011-2012 academic year are now online! Since ANS was established in 1954, it has promoted the awareness and understanding of nuclear science and technology (NS&T). To further that mission, ANS administers scholarships each year that support the development and education of those who will research and implement future applications of NS&T.

More than 20 scholarships named after pioneers and leaders in NS&T are awarded each year by ANS, along with some general scholarships,to students with outstanding academic credentials. Special scholarships are also available to students in economic need.

Some scholarships are available for students entering their sophomore year and beyond in college, while others are for incoming freshmen.

The deadline for submitting scholarship applications is February 1, 2011 (April 1 for the Incoming Freshman Scholarship). Scholarship descriptions, guidelines, and requirements may be found here, and applications are available for downloading here.

PopAtomic Studios holiday fundraiser

It’s not too late to go nuclear for the holidays. PopAtomic Studios, the non-profit organization that is dedicated to arts-integrated outreach in support of nuclear energy, is raising funds to help complete its 501c3 federal tax exemption application. Make a donation to PopAtomic’s cause and receive a nuclear-themed gift, for you or to give to a family member or friend.

Click here to make a donation to PopAtomic’s holiday fund-raising effort.

Check out the cool gifts that are offered for your donation, including signed Thorium posters. Get the perfect gift for your favorite nuke, along with the warm fuzzy feeling that comes with supporting a cause that you care about!

Every donation will be rewarded with original artwork created by PopAtomic:

  • Donations of $1-$49 receive a signed holiday post card from the PopAtomic team.
  • Donations of $50-$100 receive a hand screen-printed PopAtomic t-shirt.
  • Donations of $101-$500 receive a signed, framed “Uranium: Not Just Another Rock” or “Thorium: The Smart Rock” poster.
  • Donations of $501 and up receive an original Chicago Pile-1 graphite sculpture.

Please spread the word about PopAtomic’s holiday fundraiser to friends and colleagues who are looking for the perfect gift for their favorite nuclear worker or supporter. Thank you, and Happy holidays!